Immortal Particle for a Catalytic Branching Process†

نویسندگان

  • ILIE GRIGORESCU
  • MIN KANG
چکیده

We study the existence and some asymptotic properties of a conservative branching particle system for which birth and death are triggered by contact with a set. Sufficient conditions for the process to be non-explosive are given, solving a long standing open problem. With probability one, it is shown that only one ancestry survives. In special cases, the evolution of the surviving particle is studied and for a two particle system on a half line we derive explicitly the transition function of a chain representing the position at successive branching times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super-Brownian motion: L-convergence of martingales through the pathwise spine decomposition

Evans [7] described the semi-group of a superprocess with quadratic branching mechanism under a martingale change of measure in terms of the semi-group of an immortal particle and the semigroup of the superprocess prior to the change of measure. This result, commonly referred to as the spine decomposition, alludes to a pathwise decomposition in which independent copies of the original process ‘...

متن کامل

Strong Law of Large Numbers for Branching Diffusions

Let X be the branching particle diffusion corresponding to the operator Lu + β(u2 − u) on D ⊆ Rd (where β ≥ 0 and β 6≡ 0). Let λc denote the generalized principal eigenvalue for the operator L + β on D and assume that it is finite. When λc > 0 and L+β−λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{−λct}Xt converges almost surely in the vague topology ...

متن کامل

Immortal Branching Markov Processes: Averaging Properties and Pcr Applications by Didier Piau

The immortal branching Markov process (iBMP) is a modification of the usual branching model, in which each particle of generation n is counted, in addition to its offspring, as a member of generation n + 1, its state being unchanged. When the number of offspring is Bernoulli, iBMP accounts, for instance, for the variability of the biological sequences that are produced by polymerase chain react...

متن کامل

Genealogy for Supercritical Branching Processes

We study the genealogy of so-called immortal branching processes, i.e. branching processes where each individual upon death is replaced by at least one new individual, and conclude that their marginal distributions are compound geometric. The result also implies that the limiting distributions of properly scaled supercritical branching processes are compound geometric. We exemplify our results ...

متن کامل

Local Extinction versus Local Exponential Growth for Spatial Branching Processes

Let X be either the branching diffusion corresponding to the operator Lu + β(u2 − u) on D ⊆ Rd [where β(x) ≥ 0 and β ≡ 0 is bounded from above] or the superprocess corresponding to the operator Lu + βu − αu2 on D ⊆ Rd (with α > 0 and β is bounded from above but no restriction on its sign). Let λc denote the generalized principal eigenvalue for the operator L + β on D. We prove the following dic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009